THE ROYAL A

PHILOSOPHICAL
TRANSACTIONS

A

4y \\

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS

A\

P

A\

4

SOCIETY

OF

OF

Downloaded from rsta.royalsocietypublishing.org

PGSO THE ROYAL

or—— SOCIETY

Near-Limiting Gravity Waves in Water of Finite Depth
J. M. Williams

Phil. Trans. R. Soc. Lond. A 1985 314, 353-377
doi: 10.1098/rsta.1985.0022

i i i Receive free email alerts when new articles cite this article - sign up in the box
Email alerti ng service at the top right-hand corner of the article or click here

To subscribe to Phil. Trans. R. Soc. Lond. A go to: http://rsta.royalsocietypublishing.org/subscriptions

This journal is © 1985 The Royal Society


http://rsta.royalsocietypublishing.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=roypta;314/1530/353&return_type=article&return_url=http://rsta.royalsocietypublishing.org/content/314/1530/353.full.pdf
http://rsta.royalsocietypublishing.org/subscriptions
http://rsta.royalsocietypublishing.org/

Downloaded from rsta.royalsocietypublishing.org

Phil. Trans. R. Soc. Lond. A 314, 353-377 (1985) [ 353 ]

Printed in Great Britain
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25 5 Progressive, irrotational gravity waves of constant form, with all crests in a wave train
T O identical, exist as a two-parameter family. The first parameter, the ratio of mean depth
~ to wavelength, varies from zero (the solitary wave) to infinity (the deep-water wave).

The second parameter, the wave height or amplitude, varies from zero (the
infinitesimal wave) to a limiting value dependent on the first parameter. Solutions
of limiting waves, with angled crests, have been presented in a previous paper; this
paper considers near-limiting waves having rounded crests with a very small radius
of curvature, in some cases as little as 0.0001 of the water depth.
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354 J.M. WILLIAMS

The computing method is a modification of the integral equation technique used
for limiting waves. Two leading terms are again used to give a close approximation
to the flow near the crest and hence minimize the number of subsequent terms needed;
the form of these leading terms is suggested by earlier work of G. G. Stokes
(Mathematical and physical papers, vol. 1, pp. 225-228. Cambridge University Press
(1880)), M. A. Grant (J. Fluid Mech. 59, 257-262 (1973)) and L. W. Schwartz (J.
Fluid Mech. 62, 553578 (1974)). To achieve satisfactory accuracy, however, it is now
necessary to add a set of dipoles above the crest in the complex potential plane, as
previously used by M. S. Longuet-Higgins & M. J. H. Fox (J. Fluid Mech. 80,
721-741 (1977)).

The results include the first fully detailed calculations of non-breaking waves having
local surface slopes exceeding 30°. The local profile at the crest, despite its very small
scale, is shown to tend with increasing wave height to the asymptotic self-similar form
previously computed by Longuet-Higgins & Fox. Their predictions of an ultimate
maximum slope of 30.37° and a vertical crest acceleration of 0.388¢ are supported.

The results agree well with earlier calculations for steep waves at the two extremes
of solitary and deep-water waves. In particular, it is confirmed that in the approach
to limiting height the phase velocity and certain integral quantities possess not only
the well-known maximum but also a subsequent minimum, the first in the infinite
series of extrema predicted theoretically by M. S. Longuet-Higgins & M. J. H. Fox
(J. Fluid Mech. 85, 769-786 (1978)).

Briefly considered also are the level of action of near-limiting deep-water waves,
the decay of surface drift velocity from the limiting value and the method established
for computing waves of all lesser heights.

1. INTRODUCTION

This paper continues the study of steep, irrotational, progressive, symmetrical gravity waves
begun in Williams (1981), to be referred to as paper I. Paper I concerned waves of limiting
height, whose crests are angled rather than rounded, as first shown by Stokes (1880).
Theoretical expressions for the flow near the crest, due to Stokes (1880) and Grant (1973),
were used to define two leading terms in an integral equation formulation, from which were
obtained results of high accuracy yet of relatively compact form, with a maximum of eighty
component terms. While several previous workers had explicitly included the first, Stokes, term
in their solutions, none had used the second term suggested by Grant’s work; it was shown
in paper I that the inclusion of both terms was a prerequisite to the accuracy achieved. The
solutions of paper I covered the full range of limiting waves, from the solitary wave, with infinite
wavelength, to the deep-water wave, with infinite depth.

We are concerned in this paper, as in paper I, only with uniform or regular wave trains,
in which all crests have the same form. We therefore exclude classes of irregular waves such
as have been computed recently by Chen & Saffman (1980) and Olfe & Rottman (1980).

The work of paper I has been extended to waves of near-limiting height, having rounded
crests with very sharp curvature. This proved to be a more difficult task than for limiting waves
because Stokes’s expression for the angled crest no longer applies, nor is there a known, simply
expressible, alternative. Nevertheless, a suitable modification of the original algorithm has been
found, and has yielded solutions for near-limiting waves whose accuracy is only a little short
of those of paper I. The full range, from solitary to deep-water waves, has again been covered.

Two important features of near-limiting waves have been verified. Firstly, the local surface
profile near the crest has been shown to tend with increasing height to the asymptotic self-similar
form first computed in isolation by Longuet-Higgins & Fox (1977). Their profile predicted an
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ultimate maximum slope of 30.37° and a vertical crest acceleration of 0.388¢, both of which
values are supported. Secondly, Longuet-Higgins & Fox (1978) have shown that in the
approach to the limiting wave the phase velocity and several integral properties have not only
the well-known maximum, first pointed out by Longuet-Higgins (1974, 1975), but also a
subsequent infinite sequence of ever closer minima and maxima. The accuracy of the present
results is sufficient to resolve the first of these minima.

Other previous computations of steep waves over a range of wavelengths include those of
Sasaki & Murakami (1973), Schwartz (1974) and Cokelet (1977); in addition Longuet-Higgins
& Fenton (1974) and Byatt-Smith & Longuet-Higgins (1976) have computed solitary waves,
while Longuet-Higgins (1975) has solved deep-water waves. Only the work of Cokelet and
Longuet-Higgins includes waves with surface slopes exceeding 30°, although they did not
specifically compute the wave profiles.

Section 2 first summarizes the formulation of the problem, as presented in more detail in
paper I, and §3 discusses previous analyses of near-limiting waves, especially that of
Longuet-Higgins & Fox (1977, 1978). Section 4 then describes the modification of the original
computing method for the near-limiting wave and §5 presents the results, as sets of defining
coefficients and tabulated principal properties, and considers the accuracy.

Section 6 compares the crest profiles of the highest waves computed with the asymptotic form
calculated in isolation by Longuet-Higgins & Fox. Sections 7 and 8 consider the two extremes
of solitary and deep-water waves and compare the results with previous work. Section 9 presents
detailed tabulations of selected near-limiting waves to complement the tables of paper I, and
§10 considers briefly the decay of the strong surface drift velocity from the limiting values
calculated in paper I. Finally, § 11 describes in outline the method which has been successfully
used for calculating waves of all lesser heights.

2. FORMULATION OF THE PROBLEM

The initial formulation is identical with that used for limiting waves in paper I, and will
be recapitulated only briefly. With reference to figures 1, 2, 3, which are repeated from that
paper, we consider as before progressive symmetrical, irrotational, inviscid waves propagated
without change of form in liquid of uniform and finite depth. Figure 1 shows the flow, reduced
to a steady state, in the physical plane of z = x+1iy, in which the wavelength is L, mean depth
h and wave height H; figure 2 shows the plane of the complex potential ¥ = ¢ +iyy, defined
such that surface and bed are given by ¢ = 0, —2 respectively. In view of the periodic
conditions, a further transformation is made to the 7-plane, figure 3, given by

x=1(2/d) Int, 7=pe€’ (2.1)

where d=4mn/A, (2.2)

with A being the period in the y-plane of the velocity potential ¢. The inner circle in the 7-plane,
p = R = exp (—d), represents the bed, while the outer unit circle represents the surface.

Figure 1 shows waves of both infinitesimal and finite amplitude; whereas they are defined
to have common domains in the y- and 7-planes, their wavelengths, mean depths and total
energy levels generally differ in the physical plane. The variable F? is defined such that
acceleration due to gravity g is equal to 1/2F?% F being also the Froude number of the
infinitesimal wave. The factor a accounts for the movement of the total energy line between
the infinitesimal and finite-amplitude conditions.
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356 J.M. WILLIAMS

Field variables include the horizontal and vertical velocities «, v of the steady motion and
the ratio of pressure to density p, which is related to the velocities by Bernoulli’s equation,

P340 —3y/F2—L(a—1) = 0. (2.3)

Each required solution is a harmonic function, z(y) or z(7), symmetrical at the crest and
trough planes, having the bed as a solid boundary and satisfying the Bernoulli condition (2.3)
at the surface, where p = p, = 0. In the y-plane this may be written

1 [Im (z) 1 o, _
2[ e o 1 ldz/dxiz]—ps_(),tﬁ—o, (2.4)
while in the 7-plane it is
1[Im(z) 1 . .
2[ 2 +o—1 l%d’rdz/d'rlz]—ps_o’p—l' (2.5)

Solutions are sought for the full range 00 = A > 0 or 0 < d < 0, corresponding in the 7-plane
to1 > R > 0. The extremes, however, cannot be computed specifically and it is shown in paper
I that a practical computing range for steep waves is 0.2 < 4 < 10.0. To working accuracy,
the extremes of solitary and deep-water waves may then be deduced from solutions for d = 0.2,
10.0 respectively.

We shall continue with the technique of paper I, whereby the full solution in the 7-plane
comprises a linear combination of partial solutions, each being a symmetrical harmonic function
satisfying identically the bed condition

Re(rdz/dr) =0, p=R, (2.6)

but not in general the nonlinear free-surface condition (2.5). The coefficients are determined
iteratively such that the combination satisfies (2.5) at a discrete set of nodal points stationed,
in view of symmetry, on the upper semicircle, p = 1, 0 < 0 < 7.

The solutions of paper I are in the form

z=2zy+¢, {=E&E+iy, (2.7)
where zy =—1(2/d) InT+1F?, (2.8)
and { is a linear combination of partial solutions in the following forms:

& =—i(1/d) In(1/R), (2.9)

i R2\™
gmz_m[ﬂ‘—<—) ] m=1,2,..., 0, (2.10)

T

¢, = AT — [T (R
m,A4,v [A—l_R2m]u_[A—1_1]u

(2.11)

Each of these partial solutions that contribute to { is normalized to take the value —i at the
crest, 7 = 1. We note that the last form §,, , , degenerates to {,, when 4 tends to zero.

The quantity p,(6) in (2.5) is a surface pressure distribution which should ideally be
identically zero at the end of the computation but in practice will be zero only at the nodal
points. It is convenient to regard the computed solutions as exact, with an accepted distribution
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358 ’ J.M. WILLIAMS

ps(0), and to compare them with the ideal solution, p; = 0, by means of error quantities derived
from p,. These error quantities include the maximum modulus over a wavelength, f, the
equivalent relative surface elevation error €(6), given by

e() = 2F?(0)/H, (2.12)

and the root inean square of ¢(8), denoted by e*. Paper I ((4.11)—(4.13)) defines also three
quantities P, P,, P,, comprising integrals over the wavelength of expressions involving p.(6).
These integrals were introduced in the reworking of Longuet-Higgins’s (1974, 1975) integral
relationships for non-zero p.

3. PREVIOUS ANALYSIS OF NEAR-LIMITING WAVES

Paper I discusses conditions at the angled crest of a limiting wave, considered first by Stokes
(1880) and later by Grant (1973). With Z defined to move the space origin temporarily to
the crest, the flow near y = 0 is of the form

iZ = — (3F/v/2)} (ix)i+ Clix) "+ ..., (3.1)

where C is a real coefficient.
The first term represents the 120° crest angle of the Stokes corner flow; the second term arises
from Grant’s analysis. The exponent g is given by

u=—-2K/n—1%, (3.2)
where K is a negative real root of the transcendental equation
Ktan K = —5lsm. (3.3)

The first, and dominating, root is K = —2.832, giving 4 = 1.469.

For near-limiting waves, Longuet-Higgins & Fox (1977) examine the form of the free surface
in the zone near the crest whose size is of order /, the small distance of the crest below the total
energy line. They argue that in the limit the motion depends only on the dimension [,
acceleration due to gravity g (represented in our notation by 1/2F?) and the asymptotic form
of the surface, which at distances large compared with / must tend to the profile of the Stokes
corner flow, represented by the first term of (3.1). Thisleads them to expect a family of self-similar
flows, which they compute by two independent methods, a numerical treatment using dipoles
and a full analytical method. Comparisons of this asymptotic inner profile with the inner crest
profiles of the present solutions will be made in §6.

Longuet-Higgins & Fox show further that at great distance the asymptotic approach of their
inner profile to the Stokes corner profile with slope 30° is not monotonic but oscillatory, the
initial approach to the asymptote being from above and accounting for surface slopes locally
exceeding 30°. The oscillation decays according to 7%, r being the distance from the crest, and
is governed by the imaginary roots, K = =+ 1.122i, of the same transcendental equation (3.3).
The relevant exponents, again given by (3.2), are —1+0.714i. (Longuet-Higgins & Fox use
K to denote what would be —iK in the present notation, their corresponding equation being
K tanh K = 3lzm.)

In a second paper Longuet-Higgins & Fox (1978) consider an intermediate zone of the flow
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NEAR-LIMITING GRAVITY WAVES IN WATER 359

in a near-limiting wave, whose scale is large in relation to the inner profile but small compared
with the wave as a whole. Within this zone can be expected features of both the asymptotic
behaviour of the inner profile at infinity and the form of the limiting wave near the crest. Thus,
they postulate for this region an expansion of the form

iZ = — (3F/\/2)§ (ix)§+c(ix)1.469+D<iX) _§+0'714i+D*(iX)‘%"0'714i+ ey (34)

where D is complex and D* is its conjugate. Regarding this expansion as an expression of the
small departure of a near-limiting wave from limiting form, they then use it to derive the phase
velocity and several integral properties of near-limiting waves. Their results are presented as
expansions of the small parameter €’ (denoted ¢ by Longuet-Higgins & Fox) given by

€ = ug./2%,, (3.5)

where ug, is, for the steady motion of figure 1, the value of the horizontal velocity « on the surface
at the crest. The reference quantity ¢, is the phase velocity of the infinitesimal wave having
the same depth % and wavelength L, given (Lamb 1932) by

L 2nh\:
€y = (R—F—'é tanh T) . (36)

Longuet-Higgins & Fox, pursuing their analysis for deep-water waves only, derive expansions
in € correct to order €3; they show that, although their working expansion (3.4) does not
accurately represent the inner profile, the contributions to the integrals from the inner zone
are of a higher order than €’®. These expansions will be considered further in the discussion
of deep-water waves in §8.

The present objective is to compute a complete definition of near-limiting waves, of sufficient
accuracy to resolve the details of the inner zone. The inner profile must, therefore, be generated
explicitly and the approach must be distinct from that of Longuet-Higgins & Fox. Clearly the
first term at least of (3.4) must be adjusted, representing as it does a singularity at the wave
crest; it is to be expected that for a near-limiting wave any singularity will be slightly above
the crest. Grant (1973) discusses this, and shows that when the singularity leaves the crest its
exponent can no longer be 2 but can only be 4. He concludes that in the passage to the limiting
wave several singularities of order § probably coalesce to give the limiting form of order 2. This
is corroborated by Longuet-Higgins & Fox (1978) who extend analytically their solution for
the inner profile to the region above the free surface and demonstrate the presence of a
singularity of order 3.

Schwartz (1974), having computed steep waves by a high-order computer-aided series
expansion, also considers the implied singularity above the crest and, like Grant, finds that its
order is 3 rather than 2 for waves well below the highest. He demonstrates, however, that for
waves close to the highest there is an apparent singularity of intermediate order, probably the
effect of several neighbouring singularities of order } in the process of coalescing in the limiting
case.

From this previous work we deduce that, whereas the correct representation of a near-limiting
wave should include several singularities of order 1 positioned somewhere above the crest, we
may be able to represent these adequately by a single singularity of higher order. This was
the numerical approach first tried in the present work, as described in the next section.

24 Vol. 314 A
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360 J.M. WILLIAMS

4. COMPUTING TECHNIQUE

Initial trials for near-limiting waves used the closest possible method to that established for
limiting waves in paper I. The limiting-wave solutions use two leading terms of form ¢, , ,,
(2.11), namely s¢, , sand ¢§; , ,, wheresand g are coefficients and 4 = 1.469. The nodal points
are placed at crest and trough, and uniformly between, with an additional node at a small
angle @, (in the 7-plane) from the crest.

For near-limiting waves the singularity was moved away from the crest by reducing 4 slightly
below unity in the leading terms, typically to 0.99 in the earliest runs. The exponent v of the
first term was also reduced below 2, as indicated by the discussion of § 3, the most suitable value
being found by trial and error. Although the second exponent g continues to appear in the
expansion (3.4), it was realized that the empirical adjustment made to v might call for a
consequential change in x. However, no clear improvement resulted from trial changes to u,
which was therefore left at its original value of 1.469.

With the reduction of 4, and after trial-and-error variation of the leading exponent,
reasonably accurate results were obtained for near-limiting waves, although this accuracy fell
well short of that of paper I. The solutions at this stage showed large gradients of p¢ in the
small sharply curved inner profile zone and did not, therefore, give realistic representations
of the local flow at the crest. This being so, the inclusion of the terms with complex exponent
in (3.4) was not expected to help, since they accounted only for the outer extremes of the inner
profile.

It was therefore decided, in an attempt to define the inner profile more precisely, to
supplement the original two leading terms with a series of dipoles outside the flow area,
distributed along the real axis in the 7-plane. This follows the initial method of Longuet-Higgins
& Fox (1977) for computing the asymptotic inner profile in isolation. In the notation of (2.11)
the dipoles are represented by {, g _;, with B < 4.

Up to eight dipoles were eventually used, each being associated with a new nodal point in
the inner profile zone. Despite the greatly differing scales of the inner profile and the overall
wave, and the consequent non-uniform distribution of nodes, it was generally found that the
algorithm continued to converge strongly, to yield the accurate solutions required.

Solutions have thus been computed in the following form:

=Z0+€, (4’1>

n N—2
where = 5§1,A,u+qg1,A,ﬂ+ 2y §1,B(1c),—1+ 2 a4y (4.2)
k=1 m=0

The second exponent g retains the value 1.469345741 used for limiting waves, while the
positions of the dipoles and their associated nodes are given by

B(k) =1—-2j(1—A4), (4.3)
Op = 3yn(1—4), (4.4)

with j taking selected values in the range 1-8.
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A solution obtained in the form (4.2) may afterwards, if desired, be recast into an infinite
series of basic terms

§= % Ay Es (4.5)

using binomial expansions similar to those given for limiting waves in paper I ((6.1), (6.2)).
The iteration involves N+ n+ 2 unknowns,

Oy Sy s 13 Tayoees Ty Qs Qpy oo vy Ao,

— - and N+n+2 nodal points,

S

S . 0 =kn/N, k=0,1,2,...N; 0=0,; 0=0,, k=12 ...n

4 E The first seven columns of table 1 summarize the specifications of the cases computed;
= O the remaining columns give the error quantities derived from py(6), as defined in §2 and
E 8 paper L.

TABLE 1. SPECIFICATION OF CASES COMPUTED (DEFINED IN (4.1)—(4.4)) AND ERROR
QUANTITIES

PHILOSOPHICAL
TRANSACTIONS
OF

i N 4 v 6, n juk=1,2_..n 10%, 10°¢* 10°P, 10°P, 10°P,

02 79 1099999 0.6615 /4000 6 1,2,3,4,6,8 34 1 0.0 0.0 0.0

0.99995 0.652 m/1200 6 1,2,3,4,6,8 46 5 —-05 —06 —0.1

0.9999  0.647 /800 6 1,2,3,4,6,8 22 2 0.0 0.0 0.0

0.999 0580 m/280 4 1,2,3.4 17 2 —01 —0.1 0.0

0.998 0.571 — 4 1,234 41 4 —-01 —02 0.0

0.997 0.578 — 4 1,234 17 2 0.1 0.1 0.0

0.996 0.572 — 4 1,234 16 1 0.0 0.0 0.0

0.995 0.566 — 4 1,2,3,4 18 0 0.0 0.0 0.0

0.994 0.560 — 4 1,2,3,4 19 0 0.0 0.0 0.0

0.99 0.520 — 2 1,2 8 0 —01  —0.1 0.0

0.5 41 0.99999 0.6635 n/4000 6 1,2,3,4,6,8 41 1 0.4 0.4 0.0

0.9999 0652 m/800 6 1,2,3,4,6,8 31 3 —01 —0.1 0.0

0.999 0.612 m/280 4 1,2,34 15 1 0.3 0.3 0.1

0.99 0.525 — 1 1 6 1 0.0 0.0 0.0

1.0 26 10.99999 0.664 7m/4000 6 1,2,3,4,6,8 33 2 —0.1 00 —0.1

) $10.9999  0.655 /800 6 1,2,3,4,6,8 37 5 —05 —03 —0.1
g 0.999 0.618 m/280 4 1,2,3,4 21 4 —-02 —0.1 0.0
< 0.99 0523 m/280 2 1,2 7 1 0.3 0.2 0.1
-] - 20 20  0.99999 0.6645 m/4000 8 1,2, ...8 31 2 —02 —0.1 0.0
< 0.99999  0.6645 m/4000 7  1,2,...7 35 2 0.4 0.2 0.0
P 0.9999  0.657 =w/800 8 1,2,...8 35 6 —-08 —03 —0.1
OH 0.999 0.631 m/280 6 1,2,3,4,6,8 14 2 —05 —0.2 0.0
M= 0.99 0523 m/280 4 1,2,3,4 5 1 0.0 0.0 0.0
- 10.0 19  10.99999 0.6645 m/4000 8 1,2,....8 29 3 —0.5 0.0 0.0
O 0.99999  0.6645 m/4000 7 1,2,....7 34 2 0.1 0.0 0.0
L O 1§0.9999  0.657 n/800 8 1,2,...,8 42 7 —-13  —o01 0.0
=w 0.9998  0.653 m/800 8 1,2,...8 45 5 0.8 0.1 0.0
0.999 0.631 m/280 6 1,2,3,4,6,8 19 3 —-08 —0.1 0.0

0.996 0.603 m/280 6 1,2,3,4,6,8 10 2 0.2 0.0 0.0

0.994 0541 7m/66 6 1,2,3,4,6,8 11 2 —0.2 0.0 0.0

0.992 0529 m/280 6 1,2,3,4,6,8 15 3 —-0.3 0.0 0.0

0.99 0523 m/280 4 1,2,34 6 1 0.1 0.0 0.0

1 Included in table 2. 1 Detailed in table 8. § Detailed in table 9.
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The new set of nodal points is disposed in the physical plane within a lateral distance of about
10/ from the crest. Although, as will be shown in §6, the maximum slope of the surface profile
generally occurs beyond this zone, convergence failed if an attempt was made to extend the
nodes further. It was found also that the distribution of the crest nodes could not depart sig-
nificantly from uniform spacing without destroying convergence. The schemes shown in table 1
therefore define the apparent limits of the method. It will be shown, however, that most details
of the wave motion are very well defined; only the precision of the maximum surface slope
remains slightly unsatisfactory by the high standards of accuracy generally achieved.

The new nodal points are generally closer to the crest than the original auxiliary crest node
0., introduced for limiting wave solutions. For the highest values of 4 it was found advantageous
to reduce 6, itself to as little as g5, but for lower values the original value of 3557 was retained,
although in some cases this fell within the range of the new nodes. The choice of nodes was
much less critical for values of 4 less than about 0.999, provided only that interference was
guarded against; for example, table 1 (d = 10.0, A = 0.994) shows one case in which 6, was
changed for this reason. In seven cases, 6, was eliminated entirely, ¢ then being set to zero in
(4.2).

For d = 1.0, 2.0, 10.0 the iteration was conducted as for limiting waves, being terminated
when successive steps changed no coeflicient by more than a small tolerance, generally 1078,
For d = 0.2, 0.5 this technique gave an oscillating behaviour, indicating presumably that two
alternative sets of coeflicients were capable of describing the wanted solution. In these cases,
therefore, the iteration was terminated when the maximum nodal error was of modulus less
than 1077, which condition was reached before the oscillating behaviour appeared. These
solutions are, of course, entirely satisfactory for defining the wave motion, their only
disadvantage being that a series of computed sets of coefficients will not constitute a family that
could be used for interpolation.

5. RESULTS AND DISCUSSION OF ACCURACY

The numerical results are necessarily presented only briefly in this paper; more extensive
tables are to be found in the author’s Ph.D. thesis (Williams 1983).

Table 2 shows the computed coefficients for five of the thirty-two cases listed in table 1; the
cases chosen all have local surface slopes exceeding 30°, as will be shown subsequently.

Whereas the parameter 4 is central to the numerical formulation, it is more relevant in
discussing the solutions to consider the quantity w defined by Longuet-Higgins (1975). Let u,
u, denote the velocities on the surface at the crest and trough respectively in the steady flow
(figure 1) and let

c=A/L (5.1)

be the celerity, or phase velocity, needed to bring the space-mean velocity at the bed to zero
over a wavelength. Then

w=1-— (usc ust/“o)z =1 _Q(G/ust/€)2> (5.2)

where ¢, is defined by (3.6) and € by (3.5).

The value of w, which varies from zero for infinitesimal waves to unity for limiting waves,
is included in the results illustrated in table 2.

Table 3 gives selected properties of the waves for twenty of the solutions of table 1, headed
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TaBLE 2. COMPUTED COEFFICIENTS FOR SELECTED SOLUTIONS

d 0.2

4 0.99999
w 0.99826

t x 108

a 109326767
5 353312894

93373191
" 21404
T 35752
s —24612
y 73834
s —65692
s 79508

ay —24942266

a, —377917390

57563602

5428032

870865

a5, 40 117352

—16788

—31974

—26183

—19110

@30, 45 - 1391£1)
—1043

—8133

—6552

—5420

5,50 —4570

—3905

—3368

—2923

—2548

g9, 55 —2229

—1954

—1717

—1511

—1332

a5, 60 —1176

—1039

—919

—814

—722

30,65 —641

—569

—506

—450

—401

35,70 —357

—319

—284

—254

—227

Qqs

1.0

0.99999
0.99916

x 108

108562209
214190667
60714437
6844
12075
—9495
26887
—25070
29300

—13314297
— 195882996
15091021
1340418
296722
93480
35756
15454
7254

3608

1870

998

543

299

165

91

50

27

14

7

3
1
1

1.0

0.9999
0.99612

x 108

108560378
204260132
50756488
29499
41009
—12095
57094
—33587
55660

—13313942
—172268631
11776686
904 329
167728
42070
11726
3064

436

—314
—456
—410
—319
—232
—161
—107
—69

—43

—25

—14

-7

-3

—1

10.0

0.99999
0.99924

x 10°

103085638
259298237
69977303
7726
13046
—17142
101443
—294615
558527
—559578
237037
—114283210
—220113421
13849032
1136659
236165
69931
25043
10060
4343

1958

902

417

189

82

33

12

3

363

10.0

0.9999
0.99648

x 10°

103144018
249292559
60780107
33003
48272
—36437
220042
—550344
998104
—972843
422197

— 114274560
—198367075
11438892
845366
155801
40136
12184
4002

1339

428

118

19

—7

-9

—6

-3

—1

1 Results quoted have been multiplied by the given factor, i.e. in the first column o = 109326767 x 1078, etc.
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TABLE 3. PROPERTIES OF SELECTED WAVES

(For each d, 4 takes the values 0.99999, 0.9999, 0.999, 0.99.)
d=0.20, 1/2F? = 0.506649, H,,, = 1.39940, ¢? = 0.000000

relative height parameter

d=1.0,1/2F?* = 0.656518,

0.99916

0.99612

H,

0.98244

relative height parameter @ 0.99826 0.99202 0.96449 0.84292
total head relative to crest / 0.001406 0.006447 0.028 684 0.126854
mean depth h 1.78063 1.78057 1.77957 1.78375
wavelength L 54.996 54.994 54.955 55.075
wave height H 1.3979 1.3929 1.3729 1.2724
o total head relative to bed 2+ aF? 3.07892 3.07894 3.07983 3.07890
<1, mean depth/wavelength  #/L 0.032377 0.032377 0.032 382 0.032388
—_ height/mean depth Hih 0.7851 0.7823 0.7715 0.7134
< celerity (zero mean velocity)¢ 1.14248 1.14251 1.14332 1.14084
P > celerity (zero mass transport)¢’ 1.12320 1.12323 1.12387 1.12123
@) - depth parameter 2h(Fc/L)? 0.001517 0.001517 0.001 520 0.001511
& 23] height parameter 2H(Fe/L)*  0.001191 0.001 187 0.001173 0.001078
— mean momentum 1 0.03433 0.03433 0.03462 0.03498
= O mean kinetic energy T 0.01961 0.01961 0.01979 0.01995
o O mean potential energy 14 0.01651 0.01651 0.01665 0.01693
= w radiation stress Sz 0.04724 0.04724 0.04764 0.04836
o mean energy flux E 0.04014 0.04014 0.04052 0.04088
5 Z bed velocity variance ot 0.01030 0.01029 0.01036 0.01085
Eg d=0.50, 1/2F* = 0.540988, H,,,, = 1.36616, o2 = 0.000000
8 L<) 6 relative height parameter o 0.99894 0.99514 0.97802 0.90281
DA total head relative to crest [ 0.000748 0.003437 0.015542 0.068556
9 Z mean depth h 1.87626 1.87625 1.87585 1.87703
T é wavelength L 22.8322 22.8322 22.8251 22.8258
B = wave height H 1.3654 1.3627 1.3514 1.3023
total head relative to bed 2+aF? 3.01235 3.01234 3.01266 3.01425
mean depth/wavelength ~ 4/L 0.082176 0.082176 0.082184 0.082233
height/mean depth H/h 0.72771 0.726 27 0.72040 0.69383
celerity (zero mean velocity)c 1.10076 1.10076 1.10110 1.10107
celerity (zero mass transport)c’ 1.06595 1.06596 1.06619 1.06551
depth parameter 2h(Fc/L)? 0.008061 0.008061 0.008069 0.008073
height parameter 2H(F¢/L)*  0.005866 0.005854 0.005813 0.005602
mean momentum 1 0.06531 0.06530 0.06550 0.06673
mean kinetic energy T 0.03594 0.03594 0.03606 0.03674
mean potential energy 4 0.03132 0.03132 0.03141 0.03210
radiation stress Sz 0.08275 0.08274 0.08299 0.08463
mean energy flux E 0.06844 0.06843 0.06868 0.06998
bed velocity variance o} 0.01756 0.01755 0.01758 0.01811

= 1.20900, o} = 0.00012

0.92239

w
: total head relative to crest / 0.000442 0.002034 0.009218 0.040639
— > mean depth h 1.94111 1.94111 1.94087 1.94173
O —~ wavelength L 11.7298 11.7298 11.7277 11.7262
23] wave height H 1.2085 1.2069 1.2001 1.1721
o —t total head relative to bed 2+aF? 2.826 80 2.82679 2.826 88 2.82818
= O mean depth/wavelength ~ A/L 0.165485 0.165484 0.165495 0.165589
T O height/mean depth Hih 0.62260 0.62176 0.61831 0.60366
= w celerity (zero mean velocity)e¢ 1.07132 1.07132 1.07151 1.07165
celerity (zero mass transport)¢’ 1.03034 1.03034 1.03046 1.03001
=< (2 depth parameter 2h(Fc/L)? 0.024 664 0.024 664 0.024678 0.024702
Yo height parameter 2H(Fe¢/L)*  0.015356 0.015335 0.015259 0.014912
= mean momentum I 0.07955 0.07954 0.07967 0.08085
8 (O mean kinetic energy T 0.04261 0.04261 0.04268 0.04332
ag O mean potential energy 4 0.03822 0.03822 0.03827 0.03891
9 Z radiation stress Sra 0.08532 0.08531 0.08545 0.08669
T § mean energy flux E 0.07148 0.07147 0.07162 0.07265
[ray bed velocity variance o} 0.01522 0.01522 0.01522 0.01551
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TABLE 3 (continued)

d =20, 1/2F* = 1.037315, H,,,, = 0.79997
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relative height parameter o 0.99923 0.996 44 0.98376 0.928 92
total head relative to crest / 0.000239 0.001102 0.005027 0.021951
mean depth h 1.94083 1.94083 1.94062 1.94105
wavelength L 5.9191 5.9191 5.9183 59174
wave height H 0.79972 0.79883 0.79508 0.78028
total head relative to bed 2+aF? 2.48553 2.48553 2.48548 2.48610
mean depth/wavelength  &/L 0.327892 0.327890 0.327902 0.328024
height/mean depth H/h 0.41205 0.41159 0.40970 0.40199
celerity (zero mean velocity)¢ 1.06151 1.06151 1.06166 1.06182
celerity (zero mass transport)¢’ 1.03049 1.03049 1.03060 1.03037
depth parameter 2h(Fe/L)? 0.060174 0.060173 0.060201 0.060251
height parameter 2H(Fe/L)*  0.024795 0.024767 0.024 665 0.024 220
mean momentum 1 0.06020 0.06020 0.06027 0.06104
mean kinetic energy T 0.03195 0.03195 0.03199 0.03241
mean potential energy 14 0.02885 0.02885 0.02888 0.02928
radiation stress Sy 0.04759 0.04758 0.04767 0.04821
mean energy flux E 0.04396 0.04395 0.04404 0.044 56
bed velocity variance o} 0.00327 0.003 26 0.00327 0.00332
trough velocity variance  o? 0.001 84 0.00184 0.001 84 0.00186
d =10.0, 1/2F? = 5.000000, H,, . = 0.167135, o} = 0.00000

relative height parameter ® 0.99924 0.99648 0.98396 0.92976
total head relative to crest / 0.0000484 0.0002231 0.0010178 0.0044465
mean depth h 1.89782 1.89783 1.89758 1.89743
wavelength L 1.18483 1.18484 1.18467 1.18449
wave height H 0.16708 0.16691 0.16614 0.16315
total head relative to bed 2+aF? 2.01031 2.01031 2.01010 2.00999
mean depth/wavelength  A/L 1.601765 1.601764 1.601776 1.601903
height/mean depth H/h 0.08804 0.08795 0.08756 0.08599
celerity (zero mean velocity)e¢ 1.06061 1.06060 1.06075 1.06091
celerity (zero mass transport)¢’ 1.05384 1.05384 1.05397 1.05406
depth parameter 2h(Fe/L)®  0.30414 0.304 14 0.304 27 0.30444
height parameter 2H(Fe/L)* 0.02678 0.02675 0.02664 0.02618
mean momentum I 0.012837 0.012835 0.012851 0.013011
mean kinetic energy T 0.006808 0.006807 0.006816 0.006902
mean potential energy vV 0.006 146 0.006 145 0.006151 0.006234
radiation stress Sra 0.008792 0.008 790 0.008808 0.008904
mean energy flux E 0.008624 0.008623 0.008639 0.008738
trough velocity variance  o? 0.00227 0.00227 0.00227 0.00230

in each case by the value of w. Properties mentioned, in addition to those already defined,
include:
the height H ,  of the corresponding limiting wave (taken from paper I);
an alternative celerity ¢’ = 2/k, bringing net mass transport at any vertical section to zero
over a wave period;
the integral properties discussed by Longuet-Higgins (1975) and defined fully in paper
I. They include the mean densities over a wavelength of momentum 7 (paper I, (4.5)),
kinetic energy 7' (I, (4.6)) and potential energy V (I, (4.7)); the radiation stress S,, (I,
(4.8)) and mean energy flux £ (I, (4.9));
the variances o}, o of the velocity distribution along the bed and beneath the trough,
defined by (4.14), (4.15) of paper I.
The solutions, as shown by table 2, give compact representations of near-limiting waves,
which have not been achieved before, but are less elegant than the limiting-wave solutions of
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paper I. The main sequences of coefficients decay less rapidly to zero and in some cases change
sign. The coefficients of the dipole terms vary erratically in magnitude and sign, although it
should be noted that Longuet-Higgins & Fox (1977) obtained similar behaviour in their
original calculation of the inner profile. For solutions involving six to eight dipoles there is a
tendency for successive coefficients to become equal and opposite; in fact attempts to use more
dipoles usually failed because such pairs of coefficients increased in magnitude without apparent
limit at successive iterations.

The error quantities shown in table 1 are generally larger than for the corresponding
limiting-wave solutions (paper I, table 2), but nevertheless show that a high accuracy has been
achieved. The maximum surface pressure g in no case exceeds 5 x 1075, ¢* does not exceed
7 x107% and the greatest of the pressure integrals P,, P,, P, has modulus 1.3 X 107¢.

6. THE INNER PROFILE NEAR THE CREST

The asymptotic inner profile calculated by Longuet-Higgins & Fox (1977) and discussed
in §3 has a maximum slope of 30.37° and a vertical crest acceleration of 0.388g. The principal
features of the inner profiles of the present solutions are given for comparison in table 4, which
includes some further error quantities based on the surface pressure distribution p (6). As the
scale of the inner profile diminishes it will theoretically approach the asymptotic form but on
the other hand will become progressively less well resolved in the computed solution. As a
measure of this resolution, the local maximum modulus of p, over a particular range is
multiplied by 2F? to convert it to a displacement error and divided by the profile scale /, to
define a quantity 8. Three values, (§1, (§2, (§3, have been calculated for each inner profile,
applicable to theranges 0 < x/1 < 3,3 < x/[ < 7.5,7.5 < x/l < 25 respectively, and are shown
in table 4.

TABLE 4. PROPERTIES OF INNER PROFILES, WITH ERROR QUANTITIES

computedmax. max. slope crest . . .
d 4 l slope/deg  position, x/l acceleration/g 10%3, 1084, 1084,
0.2 0.99999 0.001406 30.35 14.9 0.3890 776 81 41200
0.9999 0.006447 29.98 12.8 0.3876 641 30 3310
0.999 0.028684 28.56 9.3 0.3811 433 47 1200
0.99 0.126 854 23.47 5.9 0.3430 132 16 22
0.5 0.99999 0.000748 30.40 15.2 0.3891 805 114 50100
0.9999 0.003437 30.17 14.0 0.3884 656 34 5220
0.999 0.015542 29.35 10.6 0.3852 589 53 1750
0.99 0.068556 26.27 71 0.3666 155 126 121
1.0 0.99999 0.000442 30.41 15.3 0.3892 820 131 52100
0.9999 0.002034 30.26 14.6 0.3886 663 35 6670
0.999 0.009218 29.73 11.9 0.3867 609 55 2230
0.99 0.040639 27.65 8.2 0.3756 10 267 269
2.0 10.99999 0.000239 30.40 16.2 0.3890 710 48 37500
10.99999 0.000238 30.42 15.3 0.3888 445 178 54500
0.9999 0.001102 30.29 15.3 0.3887 667 32 3270
0.999 0.005027 29.92 12.6 0.3874 610 32 1000
0.99 0.021951 28.37 8.9 0.3797 45 26 237
10.0 10.99999 0.0000484 30.40 16.2 0.3890 711 50 37400
10.99999 0.0000482 30.42 15.5 0.3888 448 178 54400
0.9999 0.0002231 30.30 15.3 0.3888 667 32 3230
0.999 0.0010178 29.95 13.0 0.3876 610 32 1370
0.99 0.0044465 28.49 9.2 0.3804 45 26 263

t Eight dipoles. } Seven dipoles.
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The low values of (§2 in table 4 show that the inner profile is generally best resolved over
the second range. The table also shows that resolution depends primarily on the size of the
profile in the 7-plane, indicated by 1 — A, rather than on its physical size /.

For A = 0.99999, the highest value computed, the crest acceleration lies within the range
0.3888¢g to 0.3892¢ for all values of d. Despite the considerable range of physical scale of these
profiles, table 4 shows that they are of similar precision and may, therefore, be compared on
an equal basis with the asymptotic profile of Longuet-Higgins & Fox; this comparison is made

o in table 5.
~y
h |
—
;5 > TABLE 5. COMPARISON OF INNER PROFILES FOR 4 = 0.99999 WITH THE ASYMPTOTIC PROFILE
@) : of LoncueT-Hiceins & Fox (1977)
a o (A%/l, A7/l are shown in roman type for positive gy, italics for negative pg and bold type at the position of maximum
E 8 surface slope. Note d = 2.0 (with eight and seven dipoles) is not shown, being almost identical with d = 10.0.)
=w L-H. & F. this paper, 4 = 0.99999 L-H. & F.
-
5% —@Fy/ (2/8) &/l 104 Ax/! 104 Aj/! i/l
25 = d=02 05 1.0 100 100 =02 0.5 1.0 10.0 10.0
o9 s (I I
e +
le) ‘2 0 0.0000 0 0 0 0 0 0 0 0 0 0 1.0000
S 0.9938 0.6953 —1 —1 —1 —1 —1 1 1 1 1 0 1.0464
L 1.9895 1.3539 -3 -3 —4 -3 -2 0 0 1 0 0 1.1709
o= 2.9892 19607 -3 —4 —4 -3 -2 -3 —3 -2 —2 —1 13448
3.9949 2.5182 -2 -3 —4 -3 —2 -5 —4 —4 -3 —1 1.5445
5.0086 3.0347 —1 -2 -2 —2 -2 -7 -5 —4 —4 —1 1.7564
6.0324 3.5187 1 —1 —2 —1 —2 —7 -5 —4 —4 —1 1.9732
7.0685 3.9772 3 0 0 0 —1 -7 -5 —4 —4 —1 2.1915
8.1193 4.4160 3 0 —1 0 -2 -8 -5 —4 —4 —1 2.4097
9.1873 4.8393 5 1 0 0 -2 -8 —4 -3 -3 0 2.6271
10.2749 5.2508 6 1 0 1 —2 -9 -5 -3 —4 0 2.8438
11.3849 5.6534 7 1 —1 1 —3 -9 —4 —2 —3 1 3.0598
12.5203 6.0495 8 2 —1 1 -3 —10 —4 —1 —3 1 3.2757
13.6844 6.4413 9 2 —1 1 -3 —10 -4 —1 -3 2 3.4919
14.8805 6.8307 10 2 —1 1 —4 —12 —4 —1 -3 2 3.7090
16.1126 7.2193 12 3 —1 2 —4 —12 -3 0 —2 3 3.9274
17.3848 7.6090 12 2 -2 1 —5 —13 —4 0 -3 3 4.1480
) } 18.7017 8.0011 13 2 -2 1 —5 —14 —3 1 -2 4 4.3712
<W{,, 20.0684 8.3972 15 3 -2 1 —6 —14 -3 2 —1 5 4.5978
— b 21.4908 8.7989 17 3 -3 1 —6 —15 -3 2 —1 5 4.8286
< 22.9753 9.2078 18 3 -3 1 -7 —16 -2 3 —1 7 5.0643
>_‘ >-4 24.5291 9.6255 20 3 —4 1 -8 —18 -2 3 —1 7 5.3059
O = 26.1606 10.0539 20 2 -5 0 —10 —19 -2 4 0 9 5.5542
Qﬁ 28] 27.8792 10.4947 22 2 —6 0 —11 —20 —1 5 0 10 5.8103
i 29.6958 10.9500 25 3 —6 1 —12 —21 —1 6 0 11 6.0754
= O 31.6228 11.4223 26 2 —17 0 —14 —23 —1 7 0 13 6.3508
E O 33.6748 11.9140 29 2 -9 0 —15 —23 1 10 2 15 6.6378
=uwu 35.8690 12.4282 30 0 —11 -1 —-19 —24 2 12 2 18 6.9383
- 38.2254 12.9681 31 -2 -4 -2 =22 =25 4 15 3 21 7.2541
<z 40.7678 13.5376 33 —4 —18 -2 —-26 —27 5 17 3 23 7.5876
EO 43.5250 14.1414 32 -9 —-24 —4 —-33 —-29 6 20 5 26 7.9412
E = 46.5315 14.7847 32 —14 -31 —6 —40 31 8 22 7 29 8.3181
og LOL 49.8295 15.4740 30 —-21 —-40 -9 —-50 —36 7 23 8 30 8.7221
DA 53.4712 16.2170 28 —30 —-51 —-13 —-62 —43 4 22 8 30 9.1577
92 57.5216 17.0232 25 —40 —-64 —18 —-76 —51 0 20 10 29 9.6302
EE t Eight dipoles. 1 Seven dipoles.
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The origin is taken temporarily on the total energy line above the crest with surface
coordinates %, § corresponding respectively to y, x as defined by Longuet-Higgins & Fox. The
outer columns of table 5 give their computed profile, with %//, §// tabulated as functions of
¢F4/(2/). The remaining columns show the deviations A%//, Aj/! of the present solutions from
this profile. To indicate the fluctuations of the small surface-pressure error pg, the entries are
shown in roman type where p is positive and in italics where it is negative; the changes of sign
usually occur at the nodal points. In addition, the entry nearest to the point of maximum slope
of each profile is printed in bold type.

For #/l < 7.5 all profiles for d > 0.5 are very close to the asymptotic profile, the small
discrepancies being consistent with the generally small values of (§2 (table 4). The much larger
values of (§1 for the innermost zone evidently do not have a significant effect. For d = 0.2,
however, the profile at £/{ = 7.5 is distinctly above the asymptotic solution and since table 4
has shown that all solutions are of comparable quality this must be accepted as a genuine trend.

In most solutions for a given 4 not only are 8 values of comparable magnitude but also p,
exhibits a similar sequence of sign changes over the profile, raising the possibility of a common
systematic error. In an attempt to break this pattern supplementary solutions have been
computed for d = 2.0, 10.0, with seven dipoles instead of the original eight. This changes the
sign of p over most of the profile, although not at the extreme crest nor in the outer zone,
%/1 > 17.5. The value of (§1 is, however, almost halved (table 4), with an accompanying reduction
of 0.0002¢ in the computed crest acceleration. The true acceleration is therefore expected to
be about 0.3885¢ for these cases and is probably the same for the asymptotic solution, agreeing
very closely with Longuet-Higgins & Fox’s estimate of 0.388g.

In the outer zone, £/{ > 7.5, 33 is large, being less restrained by the additional nodes, which
cannot extend throughout this region without destroying convergence. All solutions except for
d = 0.2 now deviate below the asymptotic profile, giving computed maximum slopes exceeding
Longuet-Higgins & Fox’s value of 30.37°. Some estimate of the likely error in slope can be made
from the seven-dipole solutions, which increase (§3 by 50 9%, and the slope by 0.02°. This would
suggest a true maximum slope for these cases of about 30.36°, and in particular we may say
that this applies to a deep-water wave (represented to sufficient accuracy by 4 = 10.0) with
w = 0.99924. Longuet-Higgins & Fox (1977) show graphically that the maximum slope of both
solitary and deep-water waves varies linearly with w as w nears unity. The slope of their line,
together with the above values, indicates a maximum slope for w = 1 of about 30.38°, although
the accuracy is not sufficient for the second decimal place to be stated firmly. Longuet-Higgins
& Fox’s calculation of the asymptotic profile in isolation remains the best estimate of maximum
slope. I noted, however, in examining their table 3 (reproduced in the present table 5), that
the maximum slope appeared to be almost 30.38°, rather than 30.37° as stated in their paper.

7. SOLITARY WAVES

It was shown in paper I that solutions for 4= 0.2 define to working accuracy the
corresponding steep solitary wave because the flow at the trough is sensibly uniform and may
simply be extended indefinitely. The value of w derived from this extrapolation is denoted by
®y. Table 6 summarizes the propefties of near-limiting solitary waves deduced in this way;
results for w,, = 1, the limiting wave, are taken from table 5 of paper I.

The symbols I, T, V now have a subscript co to denote the alternative definitions for solitary


http://rsta.royalsocietypublishing.org/

/

AL

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL A
SOCIETY L\

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

NEAR-LIMITING GRAVITY WAVES IN WATER 369

TABLE 6. PROPERTIES OF LIMITING AND NEAR-LIMITING SOLITARY WAVES

(Values are normalized such that acceleration due to gravity and undisturbed depth are each taken as unity.
Values in parentheses are interpolated from Byatt-Smith & Longuet-Higgins (1976). Interpolated values giving
maximum Froude number and maximum surface slope = 30.00° are shown in italics.)

max. surface

Vo H Froude no. M, Co I, T, Ve slope/deg
1.00000 0.833197  1.290889 1.970319 1.714569 2.543463 0.535005 0.437670 30.00
0.99833 0.8323 1.29086 1.9702 1.7145  2.5432 0.5349 0.4376 30.3
0.99514 0.8307 1.29085 1.9699 1.7142 2.5429 0.5348 0.4375 30.15
0.9927 30.00
0.99232  0.8294 1.29089 1.9696 1.7139 2.5425 0.5348 0.4375 29.98
0.96582 0.8181 1.29242 1.9776 1.7194  2.5559 0.5405 0.4419 28.56
0.94595 0.8096 1.29355 1.9892 1.7290  2.5732 0.5460 0.4464 27.60
(1.2934) (1.730) (0.546) (0.447)

0.92896 0.8018 1.29410 1.9997 1.7382 2.5878 0.5498 0.4497 26.82
(1.2940) (1.739) (0.549)  (0.450)

0.917 1.29421

0.91440 0.7947 1.29421 2.0082 1.7461 2.5990 0.5520 0.4518 26.18
(1.2941) (1.746) (0.552) (0.452)

0.90119 0.7878 1.29403 2.0152 1.7529 2.6077 0.5530 0.4531 25.61
(1.2940) (1.752) (0.553) (0.453)

0.88887 0.7812 1.29361 2.0209 1.7589  2.6142 0.5533 0.4536 25.09
(1.2936) (1.756) (0.552) (0.453)

0.84895 0.7576 1.29082 2.0332 1.7742 2.6244 0.5487 0.4515 23.47
(1.2909) (1.772) (0.548) (0.451)

waves given, after Longuet-Higgins (1974), by (4.23)—(4.25) of paper I. Three new quantities
are the excess mass M and circulation C, defined by (I, (4.21), (4.22)), and H’, the ratio of
wave height to undisturbed depth. As in paper I, the values of table 6 are normalized according
to Longuet-Higgins’s definition, with acceleration due to gravity and the undisturbed depth at
infinity each taken as unity.

It has been previously established (Longuet-Higgins & Fenton 1974) that M, Co, I, T,
VOO
height; the maxima of Froude number, T,,, V,, occur within the range of table 6. In addition,

, as well as the Froude number of solitary waves, reach maxima for waves below limiting

however, the present results are accurate enough to resolve a subsequent minimum, occurring
for all variables near w,, = 0.995. A more detailed discussion of this behaviour will be given
in §8 for deep-water waves.

The most accurate previous calculations of steep solitary waves are those of Byatt-Smith &
Longuet-Higgins (1976) who, by an integral equation technique, covered the range
0.80 < w,, < 0.96. Within this range their tabulated results have been interpolated for the
values of w,, appearing in table 6, and are shown there in parentheses. To the precision of their
quoted results, four decimal places for Froude number and three for C, T, V,, the agreement
is generally excellent.

The highest previous near-limiting solitary waves are due to Sasaki & Murakami (1973),
who have published eight solutions in the range 0.984 < w,, < 0.991, with maximum surface
slopes up to 29.9°. For steep waves, the maximum slope has been shown to vary almost linearly
with w,, by Longuet-Higgins & Fox (1977), who on this basis demonstrated the consistency
of slopes computed by Sasaki & Murakami and Byatt-Smith & Longuet-Higgins (1976). The
former results, however, do not quite achieve the present accuracy, as is most evident from their
computed crest acceleration, which falls from 0.384g to 0.379g as w, increases through the above
range.
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370 J M. WILLIAMS

In paper I, (4.26)—(4.28), expressions are given for the error terms arising from pg in the
integral identities derived by Longuet-Higgins (1974) for the solitary wave. Whereas for the
limiting solution these errors did not exceed 2 x 107¢, they now reach values up to 4 x 1073,
although generally they do not exceed 107°. It is believed, therefore, that the integral properties
of near-limiting solitary waves have been established to four to five decimal places, as presented
in table 6. This table also includes interpolated estimates for the maximum Froude number
and the value of w,, at which the surface slope first reaches 30°.

8. DEEP-WATER WAVES

It was shown in paper I that deep-water waves may be deduced, to working accuracy, from
the solutions for d = 10. Table 7 presents the principal properties of near-limiting deep-water
waves computed in this way, with results for the limiting wave, w = 1, again taken from
paper I. These values are based on the normalization of wavelength to 2n and acceleration
due to gravity to unity.

TABLE 7. PROPERTIES OF LIMITING AND NEAR-LIMITING DEEP-WATER WAVES

(Values are normalized such that acceleration due to gravity = 1 and wavelength = 2x. Interpolated values
giving maximum ¢ and maximum surface slope = 30.00° are shown in italics.)

max. surface
) 4 H/L ¢ 1 T 14 slope/deg Ya

1.00000 0.00000  0.141063 1.092282 0.070113  0.038292  0.034568 30.00 0.60777
0.99924 0.01602  0.141020  1.09227 0.070108  0.038289  0.034566 30.4 0.60776
0.99648 0.03440  0.140867 1.09226 0.070098  0.038283  0.034561 30.3 0.60777
0.99444 0.04327  0.140757  1.09229 0.070094 0.038281  0.034557 30.24 0.60779
0.9858 30.00

0.98396 0.07347  0.140245 1.092488 0.070197 0.038344 0.034606 29.95 0.60806
0.96023 0.11566  0.139179  1.092913 0.070641 0.038602 0.034834 29.29 0.60844
0.9510 1.092951

0.94990 0.12978  0.138707 1.092950 0.070824 0.038704 0.034933 29.01 0.608 36
0.94044 0.14146  0.138262 1.092898 0.070965 0.038779  0.035012 28.77 0.60816
0.92976 0.15358  0.137743 1.092748 0.071087 0.038840 0.035084 28.49 0.607 81

The tabulated values may be compared with the predictions of Longuet-Higgins & Fox

(1978), who by the method outlined in § 3 derived (using the above normalization) the following

expressions, correct to €:

H/L = 0.14107—0.50n1¢"> +0.160¢’® cos (2.143 In¢’ — 1.54), (8.1)
¢®=1.1931—1.18¢3 cos (2.143 In e’ 4 2.22), (8.2)
1=0.07011—0.364¢" cos (2.143 In¢’ + 1.61), (8.3)
T = 0.03829—0.215¢"® cos (2.143 In€’ + 1.66), (8.4)
V =0.03457—0.169¢"% cos (2.143 In ¢’ + 1.49). (8.5)

These expressions show that, except for H/L, each variable passes through an infinite succession
of maxima and minima in its approach to the limiting value at ¢’ = 0. For ¢ < 0.05 values
of ¢, I, T, V calculated from (8.2)—(8.5) are compared with values from table 7 in the left-hand
part of figure 4. The general trends agree in all cases, with a minimum being shown at ¢’ = 0.03
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for ¢ and ¢ =~ 0.04 for I, T, V. The discrepancy in ¢ would probably be much reduced if
Longuet-Higgins & Fox’s analysis were repeated with the benefit of the more accurate limiting
value found in paper I.

For ¢ > 0.05, (8.1)—(8.5) are less precise because absent higher-order terms become
significant. Nevertheless they provide useful datum functions for investigating the mutual
consistency of the present and previous calculations. Therefore, with Ac, AI, AT, AV defined
as the difference between a computed result and the value given by (8.2)—(8.5), these differences
are plotted against €’ in the right-hand part of figure 4; the scale of w is also shown, at the
foot of the diagram. With the present results are included those of Longuet-Higgins (1975) and
Cokelet (1977); where these earlier calculations have been quoted to less than six decimal places
the implied range is shown on the plot.

Figure 4 shows the mutual consistency of almost all results; only the highest non-limiting
solution by Cokelet, for @ = 0.99, seems not to justify the number of decimal places quoted.
For w < 0.98 the previous results are probably accurate to five decimal places for ¢ and to within
two units in the sixth decimal place for I, T, V. The present results appear to justify quoting
generally to six decimal places, with an expected error of up to two units in the last place, except
that values of ¢ for 0.99 < w < 1.00 justify only five decimal places. This presentation has been
adopted in table 7, which also includes interpolated estimates for maximum ¢ and the first
attainment of a 30° surface slope.

Sasaki & Murakami (1973) have also published solutions for very steep deep-water waves,
for 0.956 < w < 0.974. The general accuracy approaches that of the present solutions but, as
for their solitary waves, the computed crest acceleration decreases with increasing w.

Angular momentum

Calculations of angular momentum and hence thelevel of action y, of near-limiting deep-water
waves have been made as described in paper I, which in turn follows the method of
Longuet-Higgins (1980). The results are given in the last column of table 7, y, being measured
positively upwards from the mean surface level and normalized relative to a wavelength of 2x.

Although the present solutions are slightly less accurate than for the limiting wave,
nevertheless there is a consistency in the sequence of values for y, suggesting that an accuracy
of at least four decimal places and possibly five has been achieved throughout. The reservations
on accuracy expressed in paper I may therefore have been overstated.

9. DETAILED TABULATIONS

The detailed properties of the flow may be computed from the defining coefficients, such
as those of table 2, according to the equations of §11 of paper I. Two cases have been chosen
for presentation: with 4 = 0.9999 for 4 = 1.0, 10.0 respectively. For these waves the crest
acceleration (table 4) is close to its asymptotic value, the maximum slope exceeds 30°, and the
inner profile is large enough in scale to be evident in the tabulation range used in paper I.

Table 8 relates to tables 10a—¢ of paper I and shows for d = 1.0, w = 0.99612 (99.83 9, of
limiting height) those parts of the flow field differing significantly from the limiting wave.
Displacement is affected only on the surface streamline, while the velocity and acceleration fields
show more widespread variations. Time ¢, taken by a particle from a starting point beneath
the wave crest, is also substantially different from the limiting case owing to the absence of the
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stagnation point. For each streamline, the increment of time saved in travelling through the
crest zone affects the value of ¢ throughout the wavelength, as noted on the table.

Table 9 presents a similar condensed tabulation for d = 10, w = 0.99648 (99.86 %, of limiting
height), from which the deep-water wave may be derived, and relates to tables 12a—¢ of
paper L. In this case, except for the acceleration field, the tabulations are needed only for the
surface streamline, ¢ = 0.

The surface profiles near the crests of the two waves, for ¢/A > —0.0002, are in close
agreement, as may be verified by dividing each set of velocities by the relevant scale factor
v/ ({/2F?); they are approaching the asymptotic form, with computed crest accelerations of
0.3886g and 0.3888¢ respectively. Beyond ¢/A = —0.0003 the surfaces diverge from the
asymptotic profile and begin to merge into the profiles previously computed for the limiting
waves.

A special comment is needed on the calculation of () for near-limiting waves. The accurate
determination of ¢ presents difficulties near the wave crest where velocities are small and time
increments consequently large. For limiting waves a series expansion was developed for the
surface streamline near the crest, and is described in Appendix 2 of paper I. For near-limiting
waves, however, no convenient alternative expansion is available and ¢ has therefore been
computed by very fine quadrature for 0 < 6/2n < 0.0025 on the surface streamline.

10. SURFACE DRIFT VELOCITIES

In paper I specimen calculations are presented of particle paths and drift profiles in limiting
waves. These show the sharp increase near the surface in the particle advance during a wave
cycle, and hence in the drift velocity.

It is of interest to calculate the surface drift velocity for near-limiting waves and determine
the rate at which it falls off from its maximum value. Following paper I, (12.1), we calculate
the surface drift velocity Uy from

US=6——L/2t(T=—l)' (10.1)

Values of Ug/c¢ are given in table 10 and show that, in broad terms, a wave of 999, of
maximum height has about 889, of the maximum surface drift velocity, while at 979, of
maximum height the drift is about 80 %, of maximum.

11. WAVES OF LESSER HEIGHT

The completion of this work on progressive finite-amplitude waves calls for the computation
of waves of all lesser heights down to zero, again over the full range of d.

For A < 0.985 both the dipoles and the second leading term of (4.2) may be dispensed with,
only a single leading term with a suitable exponent » being left. The variation of » with 4 and
A was determined by computing a few trial cases over the full range and finding an empirical
fit. A suitable expression was found to be:

v = 0.23037349740.051288646A4" —2.0893489384" +0.9785796074">

+5.56842763994'd' —17.986307 55242, (11.1)
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TaBLE 8. FLOW FIELD NEAR THE SURFACE FOR d = 1.0, A = 0.9999, v = 0.996 12

(1/2F? = 0.656518, h = 1.94110, L = 11.72983,1 75 = 0.82049, { = 0.002034.
Maximum surface slope = 30.26° (computed), 30.24° (corrected) at ¢/A = —0.00027.)

é/A 0.0000 —0.0001 —0.0002 —0.0005 —0.0010 —0.0015 —0.0025 —0.0050 —0.0100 —0.0175 —0.0250 —0.5000

) horizontal displacement, x
0.00 0.0000 0.0152 0.0243 0.0448 0.0710 0.0930 0.1308 0.2082 0.3325 0.4870 0.6224 5.8649

vertical displacement, y

— 0.00 —0.06321 —0.0569 —0.0517 —0.0398 —0.0246 —0.0121 0.0094 0.0525 0.1195 0.1990 0.2654 1.1437
2'] horizontal velocity, «
>-4 >" 0.00 0.0517% 0.0907 0.1152 0.1581 0.2000 0.2294 0.2725 0.3444 0.4354 0.5265 0.5944 1.2599
O = —0.01 0.2127 02131 0.2142 0.2210 0.2384 0.2569 0.2904 0.3542 0.4406 0.5293 0.5961 1.2596
—0.02 0.2673  0.2674 0.2677 0.2701 0.2778 0.2882 0.3116 0.3655 0.4463 0.5323 0.5980 1.2592
e =
e —0.03 0.3051  0.3051 0.3053 0.3066 0.3108 0.3171 0.3334 0.3779 0.4525 0.5356 0.5999 1.2589
E @) vertical velocity, v
[ 9) 0.00 0.0000 0.0513 0.0670 0.0917 0.1148 0.1307 0.1535 0.1894 0.2301 0.2641 0.2842 0.0000
—0.01 0.0000 0.0088 0.0175 0.0415 0.0727 0.095¢ 0.1265 0.1715 0.2186 0.2561 0.2778 0.0000
:El (2 —0.02 0.0000 0.0055 0.0110 0.0270 0.0515 0.0725 0.1050 0.1552 0.2075 0.2482 0.2715 0.0000
O o) time, ¢
E |: 0.00 0.0000 0.2297 0.3185 0.4682 0.6146 0.7171 0.8678 1.1187 1.4375 1.7585 2.0002 6.9433
(@) L<) 6 —0.01 0.0000 0.0277 0.0552 0.1336 0.2460 0.3379 0.4819 0.7301 1.0492 1.3713 1.6138 6.5657
8 7 —0.02 0.0000 0.0176 0.0351 0.0870 0.1692 0.2441 0.3727 0.6113 0.9279 1.2503 1.4935 6.4538
=Z —0.03 0.0000 0.0135 0.0270 0.0672 0.1326 0.1948 0.3080 0.5331 0.8451 1.1670 1.4106 6.3791
E § —0.04 0.0000 0.0112 0.0224 0.0559 0.1109 0.1644 0.2647 0.4756 0.7811 1.1018 1.3456 6.3220
o= —0.05 0.0000  0.0097 0.0194 0.0485 0.0965 0.1436 0.2337 0.4309 0.7288 1.0476 1.2913 6.2754
—0.06 0.0000 0.0087 0.0173 0.0432 0.0861 0.1285 0.2104 0.3951 0.6847 1.0011 1.2446 6.2359
—0.07 0.0000 0.0079 0.0157 0.0392 0.0783 0.1169 0.1923 0.3657 0.6468 0.9602 1.2032 6.2016
—0.08 0.0000 0.0072 0.0144 0.0361 0.0720 0.1077 0.1777 0.3412 0.6136 0.9238 1.1661 6.1713

—0.09 0.0000 0.0067 0.0134 0.0335 0.0670 0.1002 0.1657 0.3205 0.5844 0.8909 1.1324 6.1441
horizontal acceleration

0.00 0.0000 0.2660 0.2825 0.2875 0.2860 0.2863 0.2867 0.2862 0.2846 0.2823 0.2795 0.0000

—0.01 0.0000 0.0270 0.0530 0.1190 0.1845 0.2167 0.2450 0.2656 0.2741 0.2759 0.2748 0.0000
—-0.02 0.0000 0.0136 0.0270 0.0655 0.1189 0.1573 0.2024 0.2435 0.2630 0.2694 0.2700 0.0000
—0.03 0.0000 0.0090 0.0180 0.0444 0.0847 0.1184 0.1665 0.2213 0.2517 0.2627 0.2651 0.0000
—0.04 0.0000 0.0067 0.0135 0.0334 0.0650 0.0933 0.1386 0.2003 0.2402 0.2559 0.2602 0.0000
—0.05 0.0000 0.0054 0.0107 0.0267 0.0524 0.0764 0.1173 0.1811 0.2287 0.2491 0.2552 0.0000
—0.06 0.0000  0.0045 0.0089 0.0222 0.0438 0.0644 0.1010 0.1640 0.2174 0.2422 0.2503 0.0000

—0.07 0.0000 0.0038 0.0076 0.0190 0.0376 0.0555 0.0882 0.1490 0.2065 0.2354¢ 0.2453 0.0000
—0.08 0.0000 0.0033 0.0066 0.0165 0.0328 0.0486 0.0781 0.1359 0.1960 0.2285 0.2403 0.0000

—0.09 0.0000 0.0029 0.0059 0.0146 0.0291 0.0432 0.0699 0.1245 0.1860 0.2218 0.2353 0.0000

| vertical acceleration
—~ 0.00 0.2551% 0.1860 0.1715 0.1597 0.1564 0.1539 0.1485 0.1368 0.1177 0.0935 0.0720 —0.0532
< >_‘ —0.01 0.3185 0.3174 0.3142 0.2958 0.2600 0.2333 0.2011 0.1645 0.1316 0.1013 0.0775 —0.0530
>" —0.02 0.3128 0.3125 0.3116 0.3058 0.2891 0.2698 0.2364 0.1880 0.1444 0.1088 0.0828 —0.0528
O = —0.03 0.3071  0.3070 0.3066 0.3038 0.2950 0.2829 0.2566 0.2069 0.1562 0.1159 0.0879 —0.0525
m 2 —0.04 0.3018 0.3017 0.3015 0.2999 0.2945 0.2866 0.2670 0.2211 0.1666 0.1226 0.0928 —0.0523
= —0.05 0.2967  0.2967 0.2965 0.2955 0.2919 0.2864 0.2717 0.2315 0.1758 0.1289 0.0975 —0.0521
= O —0.06 0.2920 0.2919 0.2918 0.2911 0.2885 0.2845 0.2732 0.2386 0.1838 0.1347 0.1019 —0.0519
I O —0.07 0.2874 0.2874 0.2873 0.2867 0.2848 0.2818 0.2729 0.2433 0.1906 0.1401 0.1062 —0.0516
= uw —0.08 0.2830 0.2830 0.2829 0.2825 0.2810 0.2786 0.2715 0.2462 0.1962 0.1451 0.1102 —0.0514
—0.09 0.2788  0.2788 0.2787 0.2784 0.2772 0.2753 0.2694 0.2477 0.2008 0.1496 0.1139 —0.0512
—0.10 0.2747  0.2747 0.2747 0.2744 0.2734 0.2718 0.2670 0.2482 0.2045 0.1536 0.1174 —0.0510

t %s = average value of y on the surface.

In general, tables 10a—¢ of paper I define also the flow field of this wave with a discrepancy not exceeding 0.0002. The
exceptions, for tables 10¢, d, are tabulated above, with the origin values, marked f, applying also to tables 104, 5. Table 105
also needs the following adjustments:

Time t: for y = 0, ¢/A = —0.05(—0.05) —0.50, reduce by 0.0922.
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TABLE 9. FLOW FIELD NEAR THE SURFACE FOR d = 10.0, 4 = 0.9999, w = 0.99648

(1/2F? = 5.000000, » = 1.89783, L = 1.18484, 1§ = 0.20217, [ = 0.000223.
Maximum surface slope = 30.30° (computed), 30.29° (corrected) at ¢/A = —0.00028.)

d/A 0.0000 —0.0001 —0.0002 —0.0005 —0.0010 —0.0015 —0.0025 —0.0050 —0.0100 —0.0175 —0.0250 —0.5000

v horizontal displacement, x
0.00 0.0000  0.0017 0.0027 0.0049 0.0078 0.0102 0.0143 0.0227 0.0362 0.0528 0.0674 0.5924
vertical displacement, y

0.00 0.0899; 0.0906 0.0912 0.0925 0.0941 0.0955 0.0979 0.1026 0.1101 0.1191 0.1266 0.2568

- 3 horizontal velocity, «
— 0.00 0.0472% 0.0828 0.1052 0.1443 0.1826 0.2093 0.2486 0.3140 0.3965 0.4790 0.5405 1.2928
§ >.1 vertical velocity, v
o = 0.00 0.0000 0.0468 0.0613 0.0840 0.1054 0.1202 0.1416 0.1760 0.2168 0.2537 0.2782 0.0000
C‘ 5 time, ¢
= O 0.00 0.0000 0.0275 0.0382 0.0561 0.0736 0.0859 0.1039 0.1339 0.1718 0.2099 0.2383 0.7577
E 9) horizontal acceleration
0.00 0.0000 2.0250 2.1508 2.1918 2.1783 2.1783 2.1811 2.1800 2.1726 2.1649 2.1583 0.0000
—0.01 0.0000 0.0204 0.0408 0.1019 0.2028 0.3018 0.4910 0.8901 1.3734¢ 1.6801 1.8094 0.0000

=l N
3z
ofe)
=
-5
o9
o(h
=%
oy
o=

—0.02 0.0000 0.0099 0.0199 0.0497 0.0993 0.1487 0.2462 0.4785 0.8670 1.2494 1.4674 0.0000
-0.03 0.0000 0.0065 0.0129 0.0324 0.0647 0.0969 0.1611 0.3179 0.6054 0.9467 1.1845 0.0000

vertical acceleration

0.00 1.9438% 1.4197 1.3097 1.2313 1.2110 1.2007 1.1763 1.1197 1.0272 0.9100 0.8041 —1.5056
—0.01 2.2413 2.2412 2.2409 2.2389 2.2318 2.2202 2.1849 2.0491 1.7401 1.3965 1.1651 —1.4405
—0.02 2.0623  2.0622 2.0622 2.0616 2.0598 2.0566 2.0468 2.0029 1.8588 1.6031 1.3738 —1.3781
—0.03 1.9127 19127 19127 19124 19116 1.9101 19055 1.8844 1.8077 1.6411 1.4587 —1.3180

t s = average value of y on the surface.

In general, tables 12a—¢ of paper I define also the flow field of this wave with a discrepancy not exceeding 0.0002. The exceptions,
for tables 12¢, d, are tabulated above, with the origin values, marked }, applying also to tables 124, . Table 125 also needs the
following adjustments:

Time, ¢: for y =0, ¢/A = —0.05(—0.05) —0.50, reduce by 0.0111.

Horizontal acceleration: for f = 0, /A = —0.10, reduce by 0.0003.

Vertical acceleration: for fy =0, $/A = —0.05, —0.10, increase by 0.0003.

TABLE 10. DRIFT VELOGITIES AT THE SURFACE

(Tabulated values are of the ratio of surface drift velocity to celerity, Ug/¢.)

s d 0.2 0.5 1.0 2.0 10.0

< 7/\ 1 A

— 1.0 0.0774 0.1531 0.2219 0.2656 0.2734

< S 0.99999 0.0742 0.1488 0.2171 0.2607 0.2685

> 0.9999 0.0707 0.1438 0.2115 0.2550 0.2628

O H 0.999 0.0634 0.1334 0.1997 0.2428 0.2506

et E 0.99 0.0471 0.1106 0.1740 0.2164 0.2240

= O

: O ’ 1

[ where A = 0.45+0.2122 exp [ —4.551 (1 — A)3], (11.2)
and 4’ = 0.005— R917/29 964. (11.3)

Table 11 shows some specimen values of v (rounded to four decimal places) evaluated in
this way, with the ratio H/H . of the resulting wave. We note that all values of v are close
to, but many are less than, 3.
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TaBLE 11. EXPONENT OF LEADING TERM FOR WAVES OF LESSER HEIGHT,
AS GIVEN BY (11.1)—(11.3)

(Upper tabulated values are of v (equation (4.2)), lower values H/H,,..)

d 0.2 0.5 1.0 2.0 10.0
4

0.985 0.5006 0.5133 0.5207 0.5238 0.5243
0.8782 0.9377 0.9595 0.9673 0.9683
0.95 0.4730 0.4840 0.4902 0.4926 0.4929
0.7104 0.8472 0.9007 0.9190 0.9215
0.90 0.4605 0.4707 0.4762 0.4783 0.4786
0.5543 0.7444 0.8280 0.8568 0.8607
0.80 — 0.4606 0.4657 0.4675 0.4677
— 0.5873 0.7023 0.7431 0.7485
0.70 — — 0.4612 0.4628 0.4631
— — 0.5927 0.6381 0.6443
0.60 — — — — 0.4605
— — — — 0.5452

For waves below about 60 9, of maximum height the leading term also was discarded, leaving
only the sequence {,, as originally described in §5 of paper I.

Numerous tables of waves computed in this way are presented in the author’s Ph.D. thesis
(Williams 1983).

12. DiscUSSION

The results presented in this paper include the first fully detailed solutions of non-breaking
waves having slopes exceeding 30°. The general accuracy, although a little short of that
achieved for limiting waves in paper I, is greater than has been obtained in previous work on
steep waves, with the exception of the solution by Longuet-Higgins & Fox (1977) of the
asymptotic inner profile. The present work successfully demonstrates the approach of the crest
profiles to the asymptotic form, despite their very small scale, and supports Longuet-Higgins
& Fox’s estimate of the asymptotic maximum slope of 30.37° (possibly 30.38°) and crest
acceleration of 0.388g.

As with the limiting wave solutions of paper I, the results have been shown to be consistent
with previous work on steep solitary and deep-water waves. In particular, the accuracy is
sufficient to resolve not only the well-known first maximum of celerity and other quantities but
also the next minimum in the expected infinite sequence. It is noteworthy that this minimum
has been identified without specific inclusion of the terms with complex exponentin (3.4). These
terms express the oscillatory asymptotic behaviour of the inner profile, which leads, as
demonstrated by Longuet-Higgins & Fox (1978), to the oscillatory behaviour of the wave
properties. The present work therefore provides a stringent independent verification of their
results.

The results, together with those of paper I, should provide useful data in support of theoretical
analysis of the still unsolved question of the position and nature of the singularities in limiting
and near-limiting waves. In the field of practical numerical methods the work has also
demonstrated the feasibility of resolving accurately features of greatly differing scale; this should
be relevant to a wide range of problems, not only of fluid flow, involving near-singular
behaviour.
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ErRrRATUM TO PAPER |

On p. 159 the passage beginning in the fifth line from the bottom of the main text should read:

‘.. .the corrections to be applied to the last three of the above quantities are of order —0.0003,
—0.0001, —0.0012 respectively.’
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